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The dynamic behaviour of binary blends of linear polystyrene fractions in the terminal zone of the 
relaxation spectrum presents interesting peculiarities which have been discussed in a previous paper by 
Montfort. The viscoelastic properties are characterized by a representation in the complex plane of 
viscosities. In this paper, we propose an empirical blending law which represents such behaviour over 
a large range of frequencies. The conclusions of this law on the limiting values of r~ 0 andJ 0 are com- 
pared with those deduced from the blending laws of Graessley and BMEO. 

INTRODUCTION 

The study of binary blends of polystyrene fractions exhibits 
a phenomenon of double relaxation in the terminal zone of 
the relaxation spectrum. Each field can be attributed to the 
prevailing action of one of the two components of the blend. 
This study, undertaken by one of our team, has been the 
object of a recent paper 1. In the first section, we will sum 
up the main results of the study. 

We will then describe the observed behaviour by stating 
a blending law expressing the properties of the blend as a 
function of the properties of each component and of the 
composition of the blend. The expression for the complex 
viscosity of blends, 7/~(co), that is proposed accounts for 
viscoelastic properties in the plateau zone and the terminal 
zone, and particularly for the variations of the limiting 
values r/Oh and JO b. 

Other authors have proposed blending laws 2-s that ex- 
press the relaxation times distribution function of the blend, 
Hb(r) ,  as a function of that of each component. We will 
especially refer to the quadratic laws of Graessley 2 and 
BMEO a. An interesting critical study of these two laws has 
already been undertaken 6. We will limit ourselves to examin- 
ing the conclusions of both laws on limiting values BOb and 
Je0b and in particular, their agreement with the experimental 
results. 

blends. Each blend is designated as follows. The letter M 
is followed by six figures: the first two relate to the compo- 
nent with the lowest weight (component 1); the next two 
to the component with the highest weight (component 2); 
the last two represent the weight fraction • of component 
2 in the blend. We will call r the weight ratio of both 
components: r = M w 1/Mw2 . 

Considering the fractions as strictly monodisperse pro- 
ducts, the average weight M w of the blend can be calculated 
from the weight fractions by the expression: 

M w = (1 - ¢ ) M w l  + CbMw2 (1) 

This value is entered in Table 2, which contains data relating 
to all the blends. 

Table 1 Narrow molecular weight distribution polystyrene samples 

Sample M w 

PS 04 35 000 
PS 11 110000 
PS 20 200 000 
PS 40 400 000 

Table 2 Features of the binary blends 

Series Components /" Blends ¢ M w 

M 0440 PS 04 + 11.5 M 044005 0.05 53 350 
PS40 M 044015 0.15 90500 

EXPERIMENTAL 

The dynamic measurements were made with a Contraves- 
Kepes balance rheometer. The sample, located between two 
concentric rotating spheres, experiences a sinusoidal shearing 1. 

Complex viscosity was measured in the temperature range 
150 ° -  190°C, at frequencies varying from 10 -4 to 20 Hz. 

Materials 

The fractions, manufactured by the Waters Associates 
Corporation, have a polydispersity lower than 1.1. We have 
used four fractions with an average molecular weight higher 
than the critical molecular weight for viscosities, M c ~ 
(Table 1). 

From these fractions, we have made up three series of 

M 1140 PS 11 + 3.64 M 114005 0.05 124500 
PS 40 M 114010 0.10 139000 

M 114015 0.15 153500 
M 114025 0.25 182 500 
M 114050 0.50 255 000 

M 1120 PS 11 + 1.82 M 112015 0.15 123500 
PS 20 M 112030 0.30 137 000 

M 112070 0.70 173 000 
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Figure I Master curves of reduced complex viscosity for binary 
blends M 044005 (a), M 114015 (b) and M 112015 (c) 
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Measurements and results 
We have shown I that: 
(1) the use of complex viscosity r/*(6o) is interesting in 

order to represent the viscoelastic behaviour of  high polymers 
in the terminal zone of the relaxation spectrum. It allows us 
to define: the zero shear viscosity 

71 0 = lim ~' 
6~ -~ 0 

the steady-state compliance 

1 7" 
j o = ~ _  l i m -  

6o --" 0 o~ 

and for the fractions, an average relaxation time 

1 
7- 0 - 

CO m 

where ~m is the frequency corresponding to the maximum 
oft /";  

(2) in the complex plane, we can superpose the curves rela- 
ting to one sample (fraction or binary blend) by representing 
the reduced complex vi~osity: 

~7" ~7' ] ' ' / ,  . . . .  
1"/* = - = l'/r -- ]r/r 

~70 7/0 r/0 

(3) the curves r/r and r/r can be represented as a function 
of frequency by master curves, using a shift factor, aT, which 
has the same value for all the fractions and their binary 
blends. 

The thermal variations of~70 and ro for the fractions show 
that, in the experimental temperature range (156 ° to 186°C): 

rOT_ rlOT 
a T - - -  

7"0To ~0To 

which implies that j 0  (which is proportional to the ratio 
r0/r/o, as indicated by Rouse's theory 7 applied to an undilu- 
ted polymer s ) is independent of temperature, within the 
limited temperature range; 

(4) the curves relating to binary blends show a double 
relaxation phenomenon. The relative importance of each 
field varies in the same way as the proportion of the corres- 
ponding component in the blend. Their coupling is all the 
greater as the ratio r is nearer to unity (Figure 1). 

(5) the variations observed for the limiting values r/0b 
and JO b of binary blends are in agreement with those given 
in the literature: the variations of r/0b as a function of the 
molecular weight can be expressed by 770 = kM w 3.4, as for 
the fractions 9-11 (Figure 2). 

Je0b passes through a maximum for a certain composition 
of the blend w'x2,13 (Figure 3). 

Equations (1) and (2) indicate that r/0b can be expressed 
as a function of r/01 and r/02 in the form: 

~0b 1/3.4 = (1 - ¢)r/01 1/3.4 + (br/021/3.4 (3) 

0 

0 
.J 

/ 
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Figure 2 Zero shear viscosity p lot ted logari thmical ly against the 
molecular weight M w for  the fractions and their b inary blends at 
186°C 
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Steady state compliance for binary blends of the series 

BLENDING LAW 

We will use an analytical model in order to describe the 
theological behaviour of  these binary blends. After stating 
the law, we will compare it with the experiments and draw 
a parallel with the blending laws of  Graessley and BMEO. 

Stating the blending law 
Let us try to state a simple relationship relating the com- 

plex viscosity of  binary blends to the various parameters of  
the system. That is: 

r~  = F(co, q~, r, r/Ol, r/02, r o b  to2, T) 

The number of  independent parameters can be reduced: the 
variable T (temperature) governs the variations ofr/0i and 
roi (i = 1,2) and can then be considered as an implicit 
variable; the expression for the complex viscosities r/~ for 
the components can be expressed by 

7" = rlOi~i(corOi) (4) 

Hence, we can write: 

An extension of  the blending law for limiting viscosities can 
then be written under the form: 

r/~ (CO)I/P = (1 - or)r/t (co) lIP + osr/~(co) I/P 

Blending law for binary blends of polystyrene: d. P. Montfort  et aL 

which must agree with equation (3). Hence we infer: 

(1 - ~ + rq~) 34/P - 1 

a = r 3"4/P -- 1 (6) 

(5) 

with a =f(¢,r) ,  which meets the t ime/temperature superim- 
position principle. 

When co ~ 0, this expression leads to the relation: 

rlOb(co) lIP = (1 -- ot)'r/o11/P + otn021/e 

using 

Mw2 _ ( ~0211/3"4 

This equation indicates that the proposed law [equation (5)] 
only depends on one adjustable parameter, p. In particular, 
i f p  = 3.4, a = ~b. 

We can also write equation (5) in the form: 

71ob l/P~b(w)l/P = (1 - ~x)71011/PrlTl(co) 1/e + otrlo21/P~r2(w)l/P 

o r  

rTrb(co) lIP = (1 -- O~qrl(co) lIP + Orl*2(co) lIP (7) 

with 

(77021 1/P= r3"4/P ( l_0+r~b)3 .4 /P__  1 
0 

\~Ob/ r 3"4/P- 1 (1 + ~  +r~) 3.4/P 

Comparison with the experimental data 
We will define the variations of  parameter p as a function 

of ¢ and r from our experimental results and those of 
Masuda l°. 

Test on 77* or G*. For each blend, we are looking for the 
best value o f p  by adjusting the experimental values of  7/b 
and the values drawn from equation (5), taking into account 
both the experimental values ofr/~ and r/~ at the same 
frequency and the value of parameters ~ and r. 

For this, we need pairs o f  experimental values of  (r/~, r/~) 
corresponding to the same frequency range. The experimen- 
tal device does not enable us to obtain a sufficient overlap- 
ping. Sometimes even the frequency ranges are separated, 
as is shown by the curves relating to the PS 11 and the PS 40 
in Figure 6. 

Hence, we must search for an analytical expression 
accounting for our results on fractions in the experimental 
field and to assume analytical extensions in the frequency 
range that is beyond our reach. We have used an expression 
proposed by Le Traon t6 in the form: 

l + / a  
n* = n0 (8) 

1 +j(cor  +a )  

where a is a parameter with the same value for all fractions 
studied (a = 0.22 -+ 0.01) and ~" is linked with r0 by the 
relation: 

1" 

T O - (1 + a2) 1/2 

Figure 4 shows the agreement between the experimental 
points and the curves inferred from Le Traon's expression. 

Using this analytical expression, and taking into account 
the accuracy of the measurements (with a relative uncertainty 
of  5%), the best agreement is obtained for series M 1120 
(Figure5) and M 1140 (Figure 6) wi thP  = 10 -+ 1. 
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Figure 4 Frequency dependences of the componenents of the 
reduced complex viscosity for the fractions studied; the curves are 
deduced from equation (8) 

Test on the limiting values r/0b and JO b. Equation (5) 
should also account for the experimental variations of the 
limiting values ~Ob and JOb. 

The experimental blending law on limiting viscosities 
[equation (3)] is verified by the relation that we propose, 
as ~ has been defined from this blending law. 

The expression f o r ~ b  can be inferred from equation 
(7), knowing that: 

It WP 
1 71 b 1 11rb 

= l i m  - - -  lim 
J ~  n--~a oa -~ o oa ~ob oa -~ O oa 

and hence, 

- -  lira Im [(] -0)~21(oa)t /e+0n2z(oa)ln ' le  
rio oa-* 0 

It may be noted ~7 that for viscoelastic liquids at very low 
frequencies, the storage and loss moduli reduce to: 

G' = oa2r/~J0 

G" = co r/0 

hence 

n* = % 0  - Joa%Je °) 

and 

,7,~ = 1 - ioa,7oS° 

Conversely, for series M 0440, the use of equation (7) 
does not lead to a satisfactory agreement. We have represen- 
ted on Figure 7 the curves corresponding t o p  = 10. The 
origin of the discrepancy certainly lies in the use of Le Traon's 
expression for representing the behaviour or the PS 04. In 
particular, in the higher frequency range, this analytical 
form leads to values for r/"(oa) which are too low. 

In order to confirm the validity of  the proposed law, it 
should then be possible to discard an analytical expression 
representing the complex viscosity of  fractions and to dis- 
pose of data in the same frequency range. 

Then we have used the results of Masuda et al. ~o for the 
variations of the complex modulus G/~ of binary blends of  
polystyrene fractions (Table 3). 

Knowing that G * =/oar/*, the blending law can be written 

~(oa) l /P  = (1 - a)Gt(oa)Ve + a a ~  (oa)l/e (9) 

We have noticed on the corresponding curves the values of 
G 1 and G 2 for one particular frequency and entered these values 
into equation (9). The values of a are obtained from equa- 
tion (6). 

The curve obtained for the M 065850 (Figure 8) with p = 
10 is in good agreement with the experimental points. This 
blend, which corresponds to a value o f r  just near 10 - then 
comparable with our series M 0440 - shows that the discre- 
pancy noticed on this series was actually due to the use 
of Le Traon's expression. 

Equation (9) correctly represents the other results of 
Masuda. Figure 9 shows the agreement for the series BB3 
(the blend M 0517 80 is not represented) with again p ~ 10. 

0 ' 4  
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0 4  
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Figure 5 Curves of the reduced complex viscosiW deduced f rom 
the blending law [relations (7) and (8)] for the series M 1120 
a: M 112015; b: M 112030; c: M 112070 
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Figure 6 Curves of the reduced complex viscosity deduced from the blending law for the series M 1140: (a) PS 11 ; (b) M 114005; (c) M 11401 O; 
(d) M 114025; (e) M 114025; (f) M 114050; (g) PS 40; at T = 186°C 

The latter expression implies for r/rl and "qr2: 

t t  

~rb = w[ ( l  -- 0)~01J01 + 01"/02102] 

and hence 

~ e b  ~ 
(1 - O o1J°1 + O,7o2 2 

v/Ob 

We have seen that r/0Y° is proportional to an average 
relaxation time of the terminal zone (for instance, to r0). 
Hence, we can deduce from equation (3): 

:°b=41 

with 

1 - O + T O  

(1 -- q~ + r$) 3"4 
(10) 

r / 0 1 4 1  _ 7"01 
r -  

Curve A in Figure 10 shows that there is satisfactory 
agreement between the experimental points (series M 1 140) 
and the curve inferred from equation (10). This expression 
also accounts for the results obtained by other authors on 
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Figure 7 Curves of the reduced complex viscosity deduced to the 
blending law for the series M 0440: (a) M 044005; (b) M 044015 

(1 - ~b) 2 + d2~b(1 - ~b) +R2q~ 2 
JOb =JOt [(1 - q~)2 + dlq~(1 - q~) +R~b 2 ] 2 (1 1) 

in which R = (Mw2/Mwl) 3.5 and dl and d2 are functions 
depending on various parameters of the system and whose 
values have been tabulated. 

The expression for r/0b gives values of the limiting visco- 
sity blends which are too high, whereas that of J~eb satisfac- 
torily accounts for the experiment, as is shown by the curve 
B in Figure 10. 

(2) The BMEO blending law is written: 

+ 2 ~ 1 - ¢ ) H 1 2 /  r ~ + ¢ 2 H  2 
~X121 

~,11, ~12 and ~,22 are shift factors which permit us to express 
r/0b and JOb as: 

Je~ = JOt ~ ~w  ] =Je01 
(1 - ¢  +r2$) 2 

(1 -- ~ + r~b) 4 
(12) 

The expression for r/0b is in agreement with the experi- 
mental law [equation (3)], but that o f ~ b  is not suitable. 
The curve C of Figure 10 shows indeed that the values of 

Table 3 Binary blends studied by Masuda et al. 10 

Series Components r Blends ~ M w 

BB 1 PS 06 + 9.9 M 065850 0.50 320 000 
PS 58 

BB 2 PS 21 + 1.63 M 213550 0.50 288 000 
PS 35 

BB3 PS 05 + 3.56 M 051720 0.20 70 900 
PS 17 M 051740 0.40 95 000 

M 051760 0.60 119000 
M 051780 0.80 143 000 

binary blends of polystyrene fractions, as is shown by 
Figure 11. 

Quadratic laws of Graessley and BMEO. Other authors 
have dealt with the binary blends of polystyrene fractions 
and attempted to account for their rheological behaviour, 
in particular from an analysis of the function of distribution 
of relaxation times Hb(r ). So they have stated blending 
laws expressing Hb(r ) as a function of the relaxation spec- 
trum of each component H l ( r  ), H2(r ) and of the composi- 
tion of the blend. 

In the quadratic laws of Graessley and BMEO, ~70b and 
JO b can be expressed as functions of the composition of the 
blend. 

(1) The Graessley blending law is written: 

Hb(r) = (1 - $)2Hl(r ) + ~(1 - ¢)[H12(r)+H21(r)] + $2H2(r) 

in which H12(T ) and H21(r) are terms of coupling. 
It leads to the following expressions: 

~0b =~0t[(  1 -- $)2 + d t ~ l  - ~) +R$ 2] 

2 

% 

0 
_J 

7~J~ i i i i i i i 
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Figure 8 Frequency dependences of the components of the dyna- 
mic modulus for the blend M 065850 (results of Masudal0): the 
curve is deduced from the blending law [equation (9)]. The extreme 
curves represent the experimental variations of the dynamic modulus 
of the components of the blend 
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Figure 9 Curves of the dynamic modulus deduced to the blending 
law for the series BB3 (results of Masuda): A, M 051720; B, M 051740; 
C, M 051760 
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Figure I I Steady state compliance for results of other authors: A, 
reference 12; B, reference 10; C, reference 13. Curves relative to 
equation (10) deduced from our blending law 

I f \  

O 
. J  

i i " 

/ \ . \  

I 

O, 

0 0 5  
® 

Figure 10 Steady state compliance for the series M 1140: A, is relative 
to our blending law (relation 10); B, to the law of Graessley (equa- 
tion 11 ); C, to the law of BMEO (equation 12) 

JO b calculated from BMEO blending law are too low. 
Thus, the quadratic laws mentioned above are in agree- 

ment with the experiment for only one limit viscoelastic 
value - JO b for the Graessley law and rlnb for the BMEO law. 

CONCLUSION 

The blending law that we propose accounts for the viscoelas- 
tic properties of binary blends of polystyrene fractions with 
a molecular weight higher than the critical weightM c. It in- 
volves only one adjustable parameter p that might be inde- 
pendent of the composition of the blend. It allows one to 
predict the behaviour of blends over a large frequency range, 
if one chooses a satisfactory analytical expression for repre- 
senting the complex viscosity rl* (or the complex modulus 
G* or the complex compliance J*) of a monodisperse 
polymer. 

It should be possible to apply this law to binary blends 
of narrow distribution samples of other polymers. 

Finally, the extension of this law to those polymers 
which have a large continuous distribution of molecular 
weights will permit one to investigate precisely the effects 
of this distribution on the rheological properties of such 
systems, 
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